Алгоритм расчёта мощности стабилизатора
При подборе необходимой модели стабилизатора напряжения его неправильно рассчитанная мощность может привести к следующим последствиям:
- стабилизатор с выходной мощностью, меньшей, чем требуется, будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
- приобретение устройства с мощностью, намного превышающей требуемое значение, будет бесполезной тратой средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.
Для определения актуальной мощности стабилизатора и правильного выбора подходящей модели рекомендуем придерживаться алгоритма, состоящего из трёх действий:
- Выяснить мощность нагрузки.
- Прибавить запас к значению мощности, потребляемой нагрузкой.
- Подобрать по итоговой величине подходящую модель стабилизатора.
Разберём три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.
Выясняем мощность подключенной к стабилизатору нагрузки
Мощность нагрузки равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это сделать очень просто: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.
Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.
Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д. Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, например, тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем.
При выборе стабилизатора следует опираться исключительно на величину мощности, потребляемой нагрузкой от электросети! В паспорте электроприбора данный параметр может быть назван: «потребляемая мощность», «присоединительная мощность», «электрическая мощность» и т.п. Всё перечисленное является отражением одной величины – активной мощности, которая измеряется в Ваттах (Вт или W).
Производители стабилизаторов обычно выстраивают модельный ряд своих стабилизаторов на основе другой величины – полной мощности, которая измеряется в Вольт-Амперах (ВА или VA). Важно понимать, что Ватты и Вольт-Амперы не одно и то же, и соответственно 1000 Вт не равны 1000 ВА!
У электроприборов, конструкция которых содержит ёмкостные компоненты или электродвигатели, активная и полная мощности могут существенно различаться. Поэтому приобретение рассчитанного на 1000 ВА стабилизатора при нагрузке в 1000 Вт может стать неверным решением – прибор окажется перегружен со всеми вытекающими отсюда последствиями.
Во избежание данной ошибки, следует перевести Ватты в Вольт-Амперы и проанализировать не только активную, но и полную мощность нагрузки. Перевод из Ватт в Вольт-Амперы осуществляется делением значения в Ваттах на специальный параметр – коэффициент мощности или cos(φ): ВА=Вт/cos(φ).
Сos(φ) отражает зависимость активной мощности устройства от полной. Чем ближе величина cos(φ) к единице, тем меньше энергии рассеивается в виде электромагнитного излучения и тем больше преобразуется в полезную работу.
Численное значение cos(φ) обычно (но не всегда) указанно в технической документации прибора, потребляющего переменный ток (может обозначаться как «cos(φ)», «Power Factor» или «PF»). Если производитель не предоставил информацию о коэффициенте мощности своего изделия, то для бытовой техники допустимо принять cos(φ) в пределах 0,7-0,8, кроме устройств, преобразующих электроэнергию в свет и тепло (лампы накаливания, электрочайники, утюги и т.д.), для них интервал значений коэффициента мощности – 0,9-1.
Современная техника, в первую очередь компьютеры, часто оснащается блоком питания с коррекцией коэффициента мощности, которая приближает данный параметр к единице – 0,95-0,99. Если уверенности в наличии такой функции (обозначается «PFC» или «ККМ») нет, то для cos(φ) рекомендуется применить значение из указанного в предыдущем абзаце типового диапазона.
Полную мощность нагрузки следует рассчитывать с использованием только значения коэффициента мощности оборудования, соответствующего этой нагрузке, а не с использованием значения входного коэффициента мощности стабилизатора!
Устройства, имеющие в своей конструкции электродвигатель, отличаются высокими пусковыми токами. К этой категории относятся: насосы, стиральные и посудомоечные машины, холодильники, кондиционеры, станки и компрессоры. Величина потребляемой из электросети энергии, в момент включения любого из названых приборов, может в несколько раз превысить величину, характерную для номинального режима работы.
Производители указанной техники иногда приводят максимальное энергопотребление непосредственно в характеристиках каждой модели, а иногда наоборот – дают только номинальное значение мощности, стараясь не привлекать внимание к неминуемым скачкам тока. Рекомендуем внимательно изучить сопутствующую любому оборудованию документацию и поискать информацию о фактической мощности, потребляемой устройством при пуске и в различных режимах работы. Мощность нагрузки определяется с использованием наибольшего из приведённых для каждого устройства значений!
Помимо механизмов с электродвигателями, высокие пусковые токи характерны и осветительным приборам. Причем не только с галогенными лампами и лампами накаливания, но и с популярным в последнее время светодиодными. Светодиоды не имеют пусковых токов, но большинство светильников, реализованных на их базе, снабжены конденсаторами, включение которых вызывает резкое увеличение потребляемого тока.
При выборе стабилизатора для защиты крупной светотехнической системы следует учесть, что значение мощности, возникающее при запуске такой системы, может многократно превышать номинальное.
Прибавляем запас по мощности
Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности.
Рекомендуемый запас составляет 30% от величины энергопотребления нагрузки. Данное значение позволит:
- подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
- избежать перегрузки в случае сильного падения напряжения в электросети.
Дадим разъяснение по второму пункту. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.
Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.
Подбираем модель стабилизатора
Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.
Выбор стабилизатора со значением мощности, ближайшим к энергопотреблению нагрузки в меньшую сторону, либо снизит заложенный ранее запас по мощности, либо в худшем случае приведёт к приобретению стабилизатора с несоответствующими нагрузке выходными параметрами.
Для трехфазного стабилизатора нагрузка на каждую фазу должна составлять не более 1/3 от номинальной. Например, трехфазный стабилизатор с номиналом 6000 ВА запитает трехфазную нагрузку в 4200 ВА (мощность потребляемая от одной фазы составит 1400 ВА), но подключение к отдельной фазе этого стабилизатора нагрузки в 2500 ВА вызовет перегрузку, так как максимально допустимое значение по одной фазе составляет: 6000/3=2000 ВА.
Пример подбора стабилизатора по мощности
Стабилизатор приобретается для одновременной защиты трех однофазных потребителей. Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3.
Согласно заводским паспортам:
- номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
- коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.
Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:
- 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
- 130 / 0,7 = 185,7 ВА – для потребителя 2;
- 700 / 0,95 = 736,8 ВА – для потребителя 3.
Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:
- 1800 + 130 + 700 = 2630 Вт;
- 2571,4 + 185,7 + 736,8 = 3493,9 ВА.
Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА).
Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:
- 2630 х 0,3 = 789 Вт – запас активной мощности;
- 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.
Следовательно мощность нагрузки с учётом запаса составит:
- 2630 + 789 = 3419 Вт;
- 3493,9 + 1048,17 = 4542,07 ВА.
Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:
Полная мощность, ВА | Активная мощность, Вт |
350 | 300 |
550 | 400 |
800 | 600 |
1000 | 800 |
1500 | 1125 |
2000 | 1500 |
2500 | 2000 |
3000 | 2500 |
3500 | 2750 |
5000 | 4500 |
7000 | 5500 |
8000 | 7200 |
10000 | 9000 |
12000 | 11000 |
15000 | 13500 |
20000 | 18000 |
Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.
Предположим, что потребителя 1, потребителя 2 и потребителя 3 необходимо подключить не к однофазному, а к трехфазному стабилизатору. Стандартный мощностной ряд ГК «Штиль» для подобных устройств следующий:
Полная мощность, ВА | Активная мощность, Вт |
6000 | 5400 |
10000 | 8000 |
15000 | 13500 |
20000 | 16000 |
Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.
Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.
Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):
- 1800 х 0,3 = 540 Вт – запас активной мощности;
- 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
- 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
- 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.
Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.
Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.
Существуют стабилизаторы топологии «3 в 1», то есть с трехфазным входом и однофазным выходом. Подобная схема позволяет равномерно нагрузить трехфазную сеть при подключении однофазной нагрузки.
Подводим итог
Во избежание ошибок при определении мощности стабилизатора и траты денег на прибор, который в итоге окажется бесполезным, необходимо:
- использовать при расчёте мощности нагрузки значение мощности, потребляемой электроприбором из сети, а не значение мощности, характеризующей полезную работу этого электроприбора;
- использовать при расчёте полной мощности нагрузки коэффициент мощности, соответствующий этой нагрузке, а не входной коэффициент мощности стабилизатора;
- рассчитывать мощность нагрузки с обязательным учётом пусковых токов для всех устройств, характеризующихся их высоким значением;
- при необходимости переводить Вт в ВА и анализировать мощность нагрузки в единицах измерения соответствующих единицам, на основе которых выстроен мощностной ряд стабилизаторов;
- выбирать мощность стабилизатора с учетом необходимого запаса;
- выбирать стабилизатор с номинальной мощностью выше, чем расчётная мощность нагрузки (допустимо лишь небольшое округление нагрузочной мощности в меньшую сторону, при условии наличия предварительно заложенного запаса мощности);
- выбирать трехфазный стабилизатор для однофазной нагрузки, анализируя не только номинальную выходную мощность устройства, но и мощность отдельной фазы.
Внимательность при расчетах и соблюдение всех вышеприведённых правил поможет подобрать модель стабилизатора, отвечающую требованиям вашей нагрузки. В случае возникновения любых сложностей и вопросов рекомендуем проконсультироваться со специалистами!
Мощностной ряд стабилизаторов напряжения «Штиль»
Российский производитель систем электропитания «Штиль» предлагает следующие инверторные стабилизаторы напряжения:
- однофазные модели настенного исполнения с выходной мощностью 0,3-18 кВт;
- однофазные модели напольного/стоечного исполнения с выходной мощностью 0,8-18 кВт;
- модели конфигурации 3 в 1 напольного/стоечного исполнения с выходной мощностью 5,4-16 кВт;
- трехфазные модели напольного/стоечного исполнения с выходной мощностью 5,4-16 кВт.